Distributed Algorithms

Consensus
4th exercise session

Matteo Monti <<u>matteo.monti@epfl.ch</u>>

Jovan Komatovic <<u>jovan.komatovic@epfl.ch</u>>

Exercise 1 (Consensus & Perfect failure detector)

Consider our fail-stop consensus algorithms (Consensus Algorithm I and Consensus Algorithm II). Explain why none of those algorithms would be correct if the failure detector turned out not to be perfect.

Exercise 2 (Consensus & Eventually perfect failure detector)

Explain why **any** fail-noisy consensus algorithm (one that uses an eventually perfect failure detector $\Diamond P$) actually solves uniform consensus (and not only the non-uniform variant).

Exercise 3 (Consensus & Correct majority)

Explain why **any** fail-noisy consensus algorithm (one that uses an eventually perfect failure detector $\Diamond P$) requires a majority of the processes to be correct. More precisely, provide a "bad run" in the case where the majority of processes is faulty.

Sequential Objects

A sequential object is a tuple $T = (Q, q_0, O, R, \Delta)$, where:

- Q is a set of states.
- $q_0 \in Q$ is an initial state.
- O is a set of operations.
- R is a set of responses.
- $\Delta \subseteq (Q \times \Pi \times O) \times (Q \times R)$ is a relation that associates a state, a process, and an operation to a set of possible new states and responses.

Processes invoke operations on the object. As a result, they get responses back, and the state of the object is updated to a new value, following from Δ .

Guided Exercise 4 (Asset Transfer Object)

Define a sequential object representing Asset Transfer, i.e., an object that allows processes to **exchange** units of currency.

Bonus Exercise 5 (Total Order & Asset Transfer)

Use Total Order Broadcast to implement an Asset Transfer sequential object.